Disclaimer:
This document does not claim any originality and cannot be used as a substitute for prescribed textbooks. I would like to acknowledge various sources like freely available materials from internet particularly NPTEL/ SWAYAM course material from which the lecture note was prepared. The ownership of the information lies with the respective authors or institutions. Further, this document is not intended to be used for commercial purpose and the BlogSpot owner is not accountable for any issues, legal or otherwise, arising out of use of this document.
This
open resource is a collection of academic courses of under graduation program for
B.Tech (Civil Engineering) as per the syllabus of Dr. B.A.T University, Lonere, Raigad
(m.s), India prepared by Dr. Mohd.
Zameeruddin, Associate Professor, MGM's College of Engineering, Nanded for
use in the out-of-class activity. The content covers both theoretical and
analytical studies. There are six lessons as part of this document, and each
deal with an aspect related to Engineering Mechanics (Course Code BTES 103/203).
Unit 1: Basic Concepts
Unit 2: Equilibrium
Unit 3: Kinematics
Unit 4: Kinetics
Unit 5: Work, Power, Energy
Unit 1: Basic Concepts
Objectives
of Engineering Analysis and Design, Idealization of Engineering Problems, Simplification of real 3D problems to 2D and 1D domain, Basis of Assumptions, Types
of Supports, Types of Loads, Free Body Diagram, Laws
of Motion, Fundamental principles, Resolution and Composition
of a Forces, Resultant, Couple, Moment, Varignon's
theorem, Force Systems, Centroid of Composite Shapes, Moment of
Inertia of Planer Sections and Radius of Gyration.
Unit 2: Equilibrium
Static Equilibrium, analytical and graphical conditions of equilibrium, Lami's theorem, equilibrium of coplanar concurrent forces, coplanar nonconcurrent forces, parallel forces, beam reactions.
Simple trusses (Plane and space): method of joint for plane truss, method of section for plane trusses.
Friction: Columb law, friction angles, wedge friction, sliding friction and rolling resistance
Unit 3: Kinematics
Types of motions, kinematics of particles, rectilinear motion, constant and variable acceleration, relative motion, motion under gravity, study of motion diagrams, angular motion, tangential and radial acceleration projectile motion, kinematics of rigid bodies, concept of instantaneous center of rotation, concept of relative velocity
Unit 4: Kinetics
Mass moment of inertia, kinetics of particle, D' Alembert's principle, application of linear motion, kinetics of rigid bodies, applications in translation, applications in fixed axis rotation
Unit 5: Work, Power and Energy
Principle of virtual work, virtual displacements for particle and rigid bodies, work done by a force, spring, potential energy, kinetic energy of linear motion and rotation, work energy principle, conversion of energy, power, impulse moment principle, collision of elastic bodies
Course Objectives:
- Understand and apply the fundamental laws of engineering mechanics
- Understand and apply the condition of equilibrium to analyze the given force system
- Compute the center of gravity and moment of inertia of plane surfaces
- Evaluate the characteristics of a body/ particle in motion with or without the application of force
पाठ्यक्रम के उद्देश्य:
- इंजीनियरिंग यांत्रिकी के मूलभूत नियमों को समझें और लागू करें
- दी गई बल प्रणाली का विश्लेषण करने के लिए संतुलन की स्थिति को समझें और लागू करें
- गुरुत्वाकर्षण के केंद्र और समतल सतहों की जड़ता के क्षण की गणना करें
- बल के अनुप्रयोग के साथ या उसके बिना गति में एक निकाय / कण की विशेषताओं का मूल्यांकन करें
पाठ्यक्रम परिणाम:
ENGINEERING MECHANICS: WHAT AND WHY?
In today’s scientific
world, the various spheres of scientific activities are grouped commonly by
applying the principle of employing observation and experimentation. The branch
of science which deals or co-ordinate research work for practical utility and service
of mankind is known as "Applied
Sciences".
Engineering is an activity concerned with
the creation of a new system for the benefit of mankind. The process of
creating proceeds by way of research, design, and development. A new system
emerges from innovation and system may be constituted by mechanical, mechatronics,
hydraulic, thermal or other elements. "It may also be defined as an art of
executing a partial application of scientific knowledge." - Living
Webster Encyclopedia.
Let we try to understand
the difference between Science and Engineering. Science is concerned with a
systematic understanding and gathering of facts and laws and principles
governing natural phenomena. On the other hand, engineering is an art of the
utilization of established facts, laws and principles create a certain desired
phenomenon as shown in figure 1.
आज की वैज्ञानिक दुनिया में, वैज्ञानिक गतिविधियों के विभिन्न क्षेत्रों को आमतौर पर अवलोकन और प्रयोग को नियोजित करने के सिद्धांत को लागू करके समूहीकृत किया जाता है। विज्ञान की शाखा जो मानव जाति की व्यावहारिक उपयोगिता और सेवा के लिए अनुसंधान कार्य से संबंधित या समन्वय करती है, उसे "एप्लाइड साइंसेज" के रूप में जाना जाता है।
इंजीनियरिंग मानव जाति के लाभ के लिए एक नई प्रणाली के निर्माण से संबंधित एक गतिविधि है। अनुसंधान, डिजाइन और विकास के माध्यम से आगे बढ़ने की प्रक्रिया। नवाचार से एक नई प्रणाली उभरती है और प्रणाली यांत्रिक, मेक्ट्रोनिक्स,
हाइड्रोलिक, थर्मल या अन्य तत्वों द्वारा गठित की जा सकती है। "इसे वैज्ञानिक ज्ञान के आंशिक अनुप्रयोग को निष्पादित करने की कला के रूप में भी परिभाषित किया जा सकता है।
आइए हम विज्ञान और इंजीनियरिंग के बीच अंतर को समझने की कोशिश करें। विज्ञान प्राकृतिक घटनाओं को नियंत्रित करने वाले तथ्यों और कानूनों और सिद्धांतों की व्यवस्थित समझ और इकट्ठा करने से संबंधित है। दूसरी ओर इंजीनियरिंग स्थापित तथ्यों के उपयोग की एक कला है, कानून और सिद्धांत एक निश्चित वांछित घटना बनाते हैं जैसा कि चित्र 1 में दिखाया गया है।
The
branch of science which deals with the study of the action of forces on the
objects is called as Mechanics. Engineering Mechanics is that branch of applied
science, which deals with the laws and principles of mechanics, along with
their application to engineering problems.
विज्ञान की
वह
शाखा
जो
वस्तुओं पर
बलों
की
क्रिया
का
अध्ययन
करती
है,
यांत्रिकी कहलाती
है।
अभियांत्रिकी यांत्रिकी अनुप्रयुक्त विज्ञान की
वह
शाखा
है,
जो
यांत्रिकी के
नियमों
और
सिद्धांतों के
साथ-साथ इंजीनियरिंग समस्याओं में
उनके
अनुप्रयोग से
संबंधित है।
Engineering mechanics can be broadly classified into two groups: Fluid Mechanics and Solid Mechanics
इंजीनियरिंग
यांत्रिकी को मोटे तौर पर दो समूहों में वर्गीकृत किया जा सकता है: द्रव यांत्रिकी
और ठोस यांत्रिकी।
Fluid Mechanics:
It is the branch of science which deals with the behavior of fluids [in gases or liquid state], and the forces on them. Fluid mechanics is further classified as fluid statics and fluid dynamics. The study of fluids at rest is known as fluid statics and the study of fluids in motion considering the pressure forces is known as fluid dynamics, The fluid dynamics is further divided into fluid kinematics and kinetics based on the effects of pressure.
तरल
यांत्रिकी:
यह विज्ञान की वह शाखा है जो तरल पदार्थ [गैसों या तरल अवस्था में] के व्यवहार और उन पर लगने वाले बलों से संबंधित है। द्रव यांत्रिकी को आगे द्रव स्थैतिकी और द्रव गतिकी
के रूप में वर्गीकृत किया गया है। आराम पर तरल पदार्थ के अध्ययन को द्रव स्थैतिकी के
रूप में जाना जाता है और दबाव बलों पर विचार करते हुए गति में तरल पदार्थ का अध्ययन
द्रव गतिकी के रूप में जाना जाता है, द्रव गतिकी को दबाव के प्रभाव के आधार पर द्रव
कीनेमेटीक्स और कैनेटीक्स में विभाजित किया जाता है।
Solid mechanics
It is the branch of engineering mechanics with deals with the
behavior of rigid and deformable bodies and the forces on them. Mechanics of
rigid bodies is further classified into static and dynamics. Statics deals with
the forces and their effects while acting on the bodies at rest. Dynamics deals
with the forces and their effects, on the bodies which are in state of motion.
Dynamics is further sub-divided into; (i) Kinematics deals with the bodies in
motion without any reference to force which are responsible for a motion and
(ii) Kinetics deals with the bodies which are in motion due to the application
of the force.
Mechanics of deformable bodies depends on
material behavior. The responses are evaluated by using the theories of
failures, theory of elasticity and theory of plasticity.
ठोस यांत्रिकी:
यह इंजीनियरिंग यांत्रिकी की शाखा है जो कठोर और विकृत निकायों के व्यवहार
और उन पर लगने वाले बलों से संबंधित है। कठोर निकायों के यांत्रिकी को आगे स्थिर और
गतिकी में वर्गीकृत किया गया है। स्टैटिक्स आराम की अवस्था में पिंडों पर कार्य करते
हुए बलों और उनके प्रभावों से संबंधित है। डायनेमिक्स गति की स्थिति में निकायों पर बलों
और उनके प्रभावों से संबंधित है। डायनेमिक्स को आगे उप-विभाजित किया गया है; (i)
किनेमैटिक्स बल के संदर्भ के बिना गति में निकायों से संबंधित है जो गति के लिए
ज़िम्मेदार हैं और (ii) कैनेटीक्स उन निकायों से संबंधित हैं जो बल के आवेदन के
कारण गति में हैं।डायनेमिक्स गति की स्थिति
में निकायों पर बलों और उनके प्रभावों से संबंधित है। डायनेमिक्स को आगे उप-विभाजित
किया गया है; (i) किनेमैटिक्स बल के संदर्भ के बिना गति में निकायों से संबंधित है
जो गति के लिए ज़िम्मेदार हैं और (ii)
कैनेटीक्स उन निकायों से संबंधित हैं जो बल के आवेदन के कारण गति में हैं।
विकृत निकायों के यांत्रिकी भौतिक व्यवहार पर निर्भर करते हैं। विफलताओं के सिद्धांत, लोच के सिद्धांत और प्लास्टिक के सिद्धांत का उपयोग करके प्रतिक्रियाओं का मूल्यांकन किया जाता है।
Employability - The opportunity to employ all one's abilities.
रोज़गार योग्यता - अपनी सभी क्षमताओं को नियोजित करने का अवसर।
Mechanics and its
relevance to Engineering
Mechanics is a physical science, concern with the dynamical behavior of bodies in presence of the mechanical disturbances which is a point of interest in disciplines of Mechanical, Electrical, Civil, Chemical, Aeronautical, textile, metallurgical and mining Engineers. This is a reason that makes it to appear in the core disciplines of the engineering analysis.
Mechanics is the physical science concerned with the dynamical behavior of material bodies in presence of mechanical disturbances which are interest point of Mechanical, Electrical, Civil, Chemical, Aeronautical, textile, metallurgical and mining Engineers. This makes it appear in the core of all engineering analysis. Engineering Mechanics refers to a course in mechanics tailored exclusively for engineers with features such as:
- The subject matter is not presented as rigorously as a course in analytical or axiomatic mechanics may demand.
- It provides through grounding of the basic principles with the engineering applications.
- It provides a basic knowledge for other courses to be built-up on the concept of engineering mechanics.
यांत्रिकी
और
इंजीनियरिंग
के
लिए
इसकी
प्रासंगिकता
यांत्रिकी
एक
भौतिक
विज्ञान
है,
जो
यांत्रिक
गड़बड़ी
की
उपस्थिति
में
निकायों
के
गतिशील
व्यवहार
से
संबंधित
है
जो
मैकेनिकल,
इलेक्ट्रिकल,
सिविल,
केमिकल,
एयरोनॉटिकल,
टेक्सटाइल,
मेटलर्जिकल
और
माइनिंग
इंजीनियर्स
के
विषयों
में
रुचि
का
एक
बिंदु
है।
यह
एक
कारण
है
जो
इसे
इंजीनियरिंग
विश्लेषण
के
मुख्य
विषयों
में
दिखाई
देता
है।
- विषय
वस्तु
को
उतनी
कठोरता
से
प्रस्तुत
नहीं
किया
जाता
है
जितना
कि
विश्लेषणात्मक
या
स्वयंसिद्ध
यांत्रिकी
में
एक
पाठ्यक्रम
की
मांग
हो
सकती
है।
- यह इंजीनियरिंग अनुप्रयोगों के साथ बुनियादी सिद्धांतों की ग्राउंडिंग प्रदान करता है।
- यह इंजीनियरिंग यांत्रिकी की अवधारणा पर निर्मित होने वाले अन्य पाठ्यक्रमों के लिए एक बुनियादी ज्ञान प्रदान करता है।
State-of -Art-of-Development
Modernization of mankind started with the invention of wheels. The study of civilization of Babylonians, Egyptians, Greeks and Romans reveals that they used water wheels and windmills to maintain their basic amenities. The word Mechanics was put forth by a Greek philosopher "Aristotle (BC 322-384)", for the problems of lever and concept of center of gravity. First mathematical concept was given by Archimedes (BC 212-287) in the form of law of hydrostatics. Leonardo Da Vici (1452-1519) a great engineer and painter, gave many ideas for the study of mechanism, friction and the motion of bodies on inclined planes. Galileo (1564-1642) established the theory of projectiles and rudimentary idea of inertia. Huygens (1629-1695) developed the analysis of motion of pendulum. Sir Isaac Newton (1643-1727) introduced the concept of force and mass and stated the laws of motions. John Bernoulli (1667-1748) has given the concept of principle of virtual work. James Watt (1736-1819) introduced the term Horsepower for comparing performances of his engines. With the passage of time engineering mechanics coupled with knowledge of other specialized subjects for example, strength of materials, theory of machines, calculus, vector and algebra.
Review of Engineering Mechanics (Video Lecture 1)
Review of Engineering Mechanics (Video Lecture 2)
अत्याधुनिक
विकास
मानव जाति का आधुनिकीकरण पहियों के आविष्कार के साथ शुरू हुआ। बेबीलोन, मिस्र, यूनानियों और रोमनों की सभ्यता के अध्ययन से पता चलता है कि उन्होंने अपनी बुनियादी सुविधाओं को बनाए रखने के लिए पानी के पहियों और पवन चक्कियों का इस्तेमाल किया। यांत्रिकी शब्द को एक ग्रीक दार्शनिक "अरस्तू (बीसी 322-384)" द्वारा लीवर की समस्याओं और गुरुत्वाकर्षण के केंद्र की अवधारणा के लिए रखा गया था। पहली गणितीय अवधारणा आर्किमिडीज (बीसी 212-287) द्वारा जलस्थैतिकी के नियम के रूप में दी गई थी। एक महान इंजीनियर और चित्रकार लियोनार्डो दा विकी (1452-1519) ने तंत्र, घर्षण और झुकाव वाले सतह पर निकायों की गति के अध्ययन के लिए कई विचार दिए। गैलीलियो (1564-1642) ने प्रक्षेप्य के सिद्धांत और जड़ता के अल्पविकसित विचार की स्थापना की। ह्यूजेंस (1629-1695) ने लोलक की गति का विश्लेषण विकसित किया। सर इस्साक न्यूटन (1643-1727) ने बल और द्रव्यमान की अवधारणा पेश की और गति के नियमों को बताया। जॉन बर्नौली (1667-1748) ने आभासी कार्य के सिद्धांत की अवधारणा दी है। जेम्स वाट (1736-1819) ने अपने इंजनों के प्रदर्शन की तुलना करने के लिए हॉर्सपावर शब्द की शुरुआत की। समय बीतने के साथ इंजीनियरिंग यांत्रिकी अन्य विशिष्ट विषयों के ज्ञान के साथ युग्मित हो गया, उदाहरण के लिए, सामग्री की ताकत, मशीनों का सिद्धांत, कलन, वेक्टर और बीजगणित।
Humans learn best when they learn in a community featuring social, cognitive, and teaching presence - D. Randy Garrison.
मनुष्य
सबसे
अच्छा
सीखते
हैं
जब
वे
सामाजिक,
संज्ञानात्मक
और
शिक्षण
उपस्थिति
वाले
समुदाय
में
सीखते
हैं। -
Simplification
of real 3-D problems to 2-D and 1-D domain
The state of solid body
is defined with its volume and mass occupied in that volume. The dimensional
proportion can be traced through coordinates system either Cartesian coordinates
(x, y and z) or polar coordinates (r, q and f). When a
solid body is subjected to forces, effects may be seen on all three dimensions.
In order to avoid complex analysis, in structural analysis effects of forces
are neglected on one or more direction, this type of idealization is said to be
simplification of real 3-Dproblems.
The idealization in
which one dimension say length is considered to be very large compared to other
two dimensions, the effects along the length dominates surpassing the effects
on other two dimension is said to be 1-D
domain. For Example: Beams, frames, trusses, cables, arch, and bars.
The idealization in
which length and breadth are large compared to thickness, the effects along the
length and breadth dominates surpassing the effects on the thickness is said to
be 2-D domain. For Example: Slabs,
Deep beams, Shells or Walls.
2-डी
और
1-डी
डोमेन
के
लिए
वास्तविक
3-डी
समस्याओं
का
सरलीकरण
ठोस शरीर की स्थिति को इसके आयतन और द्रव्यमान से परिभाषित किया जाता है वह मात्रा। निर्देशांक प्रणाली के माध्यम से आयामी अनुपात का पता लगाया जा सकता है या तो कार्तीय निर्देशांक (x, y और z) या ध्रुवीय निर्देशांक (r, q and f)। जब एक ठोस पिंड पर बल लगाया जाता है, तो प्रभाव तीनों आयामों पर देखा जा सकता है। जटिल विश्लेषण से बचने के लिए, संरचनात्मक विश्लेषण में बलों के प्रभावों को एक या एक से अधिक दिशाओं में उपेक्षित किया जाता है, इस प्रकार के आदर्शीकरण को वास्तविक 3-डी समस्याओं का सरलीकरण कहा जाता है।
आदर्शीकरण
जिसमें
एक
आयाम
कहता
है
कि
लंबाई
अन्य
दो
आयामों
की
तुलना
में
बहुत
बड़ी
मानी
जाती
है,
लंबाई
के
साथ
प्रभाव
अन्य
दो
आयामों
पर
प्रभाव
को
पार
करते
हुए
1-डी
डोमेन
कहा
जाता
है।
उदाहरण
के
लिए:
बीम,
फ्रेम,
ट्रस,
केबल,
आर्क
और
बार।
आदर्शीकरण
जिसमें
मोटाई
की
तुलना
में
लंबाई
और
चौड़ाई
बड़ी
होती
है,
मोटाई
पर
प्रभाव
को
पार
करते
हुए
लंबाई
और
चौड़ाई
के
साथ
प्रभाव
को
2-डी
डोमेन
कहा
जाता
है।
उदाहरण
के
लिए:
स्लैब,
डीप
बीम,
शेल
या
दीवारें।
Fundamental units
All fundamental units relating to Engineering Mechanics are expressed
in terms of three fundamental quantities.
1. Length
2. Mass 3. Time
The
other fundamental units are
4. Electric Current 5. Temperature 6. Luminous Intensity
मौलिक इकाइयाँ
1. लम्बाई 2. द्रव्यमान 3. समय
अन्य
मूलभूत
इकाइयाँ
हैं
4. विद्युत
प्रवाह 5. तापमान 6. चमकदार
तीव्रता
Derived Units
These
are derived from fundamental units, for example.
Area
= Length x Breadth = m x m =m2
Volume= Length
x Breadth x Height = m x m x m = m3
Velocity=Distance/Time
= m/sec
व्युत्पन्न इकाइयाँ
ये मौलिक इकाइयों से प्राप्त
होते हैं, उदाहरण के लिए।
क्षेत्रफल = लंबाई x चौड़ाई
= मी x मी = मी2
आयतन = लंबाई x चौड़ाई x
ऊँचाई = मी x मी x मी = मी3
वेग=दूरी/समय = मी/सेकंड
System of Units
- C.G.S Unit: Centimeter, Gram, Second...
- F.P.S Units: Foot, Pound, Second.......
- M.K.S Unit: Meter, Kilogram, Seconds......
- SI Unit: General Conference of Weight and Measures (C.G.M.W)
इकाइयों की प्रणाली
- सीजीएस यूनिट: सेंटीमीटर, ग्राम, सेकेंड...
- एफपीएस इकाइयां: फुट, पाउंड, सेकंड .......
- एमकेएस यूनिट: मीटर, किलोग्राम, सेकेंड...
- SI इकाई: वजन और माप का सामान्य सम्मेलन (C.G.M.W)
Some basic units in the SI system
एसआई प्रणाली में कुछ बुनियादी इकाइयां
Length-Meter-m Mass-Kilogram-Kg Time-Seconds-s Electric
current-Ampere-A Temperature-Kelvin-K Luminous
intensity-Candela-cd Plane
angle-Radian-rad Solid
angle-ste-radian-sr |
लंबाई-मीटर-एम मास-किलोग्राम-किग्रा समय-सेकंड-एस विद्युत धारा-एम्पीयर-ए तापमान-केल्विन-के चमकदार तीव्रता-कैंडेला-सीडी समतल कोण-रेडियन-रेड ठोस कोण-स्टे-रेडियन-एसआर |
Fundamental Concepts and Principles
(Assumptions made in Engineering Mechanics)
मौलिक अवधारणाएं और सिद्धांत
(इंजीनियरिंग यांत्रिकी में की गई धारणाएँ)
The basic concepts used in mechanics are
space, time, mass and force.
यांत्रिकी में उपयोग की जाने वाली बुनियादी अवधारणाएं अंतरिक्ष, समय, द्रव्यमान और बल हैं।
Mass
Mass is the quantity of matter in a body
regardless of its volume or of any forces acting on it. Mass is always constant
at any place and at any time. An object on the moon would weigh less than it
does on the earth because of lower gravity, but it would still have the same
mass. This is because weight is a force, while mass is the property that (along
with gravity) determines the strength of this force [Wikipedia, Dec 2018].
Mass is expressed in Kilogram (kg), Gram (gm), and Milligram (mg). There are
several distinct phenomena which can be used to measure mass:
- Inertial mass measures an object's resistance to being accelerated by a force (F=ma)
- Active gravitational mass measures the gravitational for exerted by an object
- Passive gravitational mass measures the gravitational force exerted on an object in a known gravitational field.
द्रव्यमान
द्रव्यमान एक शरीर में पदार्थ की मात्रा है, भले ही इसकी मात्रा या उस पर कार्य करने वाले किसी भी बल की परवाह किए बिना। द्रव्यमान हमेशा किसी भी स्थान पर और किसी भी समय स्थिर होता है। चंद्रमा पर एक वस्तु का वजन कम गुरुत्वाकर्षण के कारण पृथ्वी की तुलना में कम होगा, लेकिन इसका द्रव्यमान अभी भी समान होगा। ऐसा इसलिए है क्योंकि वजन एक बल है, जबकि द्रव्यमान वह गुण है जो (गुरुत्वाकर्षण के साथ) इस बल की ताकत निर्धारित करता है [विकिपीडिया, दिसंबर 2018] ।
द्रव्यमान किलोग्राम (किलो), ग्राम (ग्राम), और मिलीग्राम (मिलीग्राम) में व्यक्त किया जाता है। कई अलग-अलग घटनाएं हैं जिनका उपयोग द्रव्यमान को मापने के लिए किया जा सकता है:
- जड़त्वीय द्रव्यमान एक बल द्वारा त्वरित होने के लिए एक वस्तु के प्रतिरोध को मापता है (एफ = एमए)।
- सक्रिय गुरुत्वाकर्षण द्रव्यमान किसी वस्तु द्वारा लगाए गए गुरुत्वाकर्षण को मापता है।
- निष्क्रिय गुरुत्वाकर्षण द्रव्यमान एक ज्ञात गुरुत्वाकर्षण क्षेत्र में किसी वस्तु पर लगाए गए गुरुत्वाकर्षण बल को मापता है।
It states that, every particle attracts every other particle in the universe with a force that is directly proportional to their masses and inversely proportional to the square of the distance between them.
Let us consider two
bodies of mass m1 and m2 respectively, which are at a
distance d from each other and is under the force of attraction as shown in
figure 2.
Figure 2 |
The
force of attraction is expressed as,
F= G (m1m2/d2)
where,
G is the constant of proportionality and is known as constant of gravity
G = Fd2/m1m2 =
Nm2/kg.kg = Nm2/kg2= 6.673 x 10-11
For
example
1
kg mass on earth surface experience a force of,
F
= (6.673 x 10-11x 1 x 5.96504 x 1024) / (6371 x 103)2
F
= 9.80665 N
where,
Mass of earth = 5.96504 x 1024
Radius
of earth = 6371 x 103
This force of attraction is always directed towards the center of earth.
Newtons Law of Gravity - video Lecture
State
and explain Newton’s laws of motion and gravitation?
न्यूटन का गुरुत्वाकर्षण स्थिरांक का नियम
यह बताता है कि, प्रत्येक कण ब्रह्मांड में हर दूसरे कण को एक बल के साथ आकर्षित करता है जो सीधे उनके द्रव्यमान के आनुपातिक होता है और उनके बीच की दूरी के वर्ग के व्युत्क्रमानुपाती होता है।
आइए हम क्रमशः द्रव्यमान m1 और m2 के दो पिंडों पर विचार करें, जो एक दूसरे से d की दूरी पर हैं और आकर्षण बल के अधीन हैं जैसा कि चित्र 2 में दिखाया गया है।
आकर्षण
बल
को
इस
प्रकार
व्यक्त
किया
जाता
है;
F= G (m1m2/d2)
जहां, G आनुपातिकता का स्थिरांक है और इसे गुरुत्वाकर्षण के स्थिरांक के रूप में जाना जाता है
उदाहरण के लिए
पृथ्वी
की
सतह
पर
1 किलो
द्रव्यमान
किसके
बल
का
अनुभव
करता
है?
F = (6.673 x 10-11x 1 x 5.96504 x 1024) / (6371 x 103)2
F = 9.80665 N
जहां
पृथ्वी
का
द्रव्यमान = 5.96504 x 1024
पृथ्वी
की
त्रिज्या = 6371 x 103
आकर्षण
का
यह
बल
हमेशा
पृथ्वी
के
केंद्र
की
ओर
निर्देशित
होता
है।
Weight (W)
The gravitational attraction of the earth on a body with quantity of
mass (m) is said to be weight (W). The weight of an object depends on the
gravity of that place. Weight is expressed in Newton (N). The weight of the
particle having a mass (m) is stated as,
W = m x g
A body of mass 1kg on the earth surface weighs 1 x 9.81 = 9.81 N
For example:
A body of mass 56 kgs weighs
- On earth = 56 x 9.81 = 549.36 kgs
- On Mercury = 0.378 x 549.36= 207.7 kgs
- On Venus = 0.907 x 549.36 = 499.9 kgs
- On Mars = 0.377 x 549.36 = 208.2 kgs
- On Jupiter = 2.364 x 549.36 = 1285.5 kgs
- On Saturn = 0.910 x 549.36 = 510.9 kgs
- On Uranus = 0.889 x 549.36 = 505.4 kgs
- On Neptune = 1.125 x 549.36 = 615.30 kgs
- On Moon = 0.165 x 549.36 = 90.64 kgs
वजन (W)
द्रव्यमान (m) की मात्रा के साथ एक पिंड पर पृथ्वी के गुरुत्वाकर्षण आकर्षण को वजन (W) कहा जाता है। किसी वस्तु का वजन उस स्थान के गुरुत्वाकर्षण पर निर्भर करता है। वजन न्यूटन (एन) में व्यक्त किया गया है। द्रव्यमान (m) वाले कण का वजन इस प्रकार बताया गया है,
W = m x g
पृथ्वी
की
सतह
पर
1 किग्रा
द्रव्यमान
के
पिंड
का
वजन
1 x 9.81 = 9.81 N होता है
उदाहरण
के
लिए:
56 किग्रा
द्रव्यमान
के
पिंड
का
भार
है
- पृथ्वी पर = 56 x 9.81 = 549.36 किग्रा
- बुध पर = 0.378 x 549.36 = 207.7 किग्रा
- शुक्र पर = 0.907 x 549.36 = 499.9 किग्रा
- मंगल पर = 0.377 x 549.36 = 208.2 किग्रा
- बृहस्पति पर = 2.364 x 549.36 = 1285.5 किग्रा
- शनि पर = 0.910 x 549.36 = 510.9 किग्रा
- यूरेनस पर = 0.889 x 549.36 = 505.4 किग्रा
- वरुण पर = 1.125 x 549.36 = 615.30 किलोग्राम
- चंद्रमा पर = 0.165 x 549.36 = 90.64 किग्रा
Space and Time
It is a region in all directions encompassing
the universe. It is a geometric position occupied by bodies. These positions
are described by linear or angular measurements with reference to a defined
system of co-ordinates.
The time is the measure of the succession of events. The selected successive
event is the rotation of the earth about its own axis, which is called
a day. The day is divided into 24 hours, an hour is divided in to 60 minutes and
a minute in 60 seconds.
The concept of space is associated with the notion of the position of point
"P" by three-length measured from Cartesian Reference Point, or
Origin, in three mutually perpendicular directions known as Coordinate of a
point whereas the time indicates its position in the space.
स्थान और समय
यह ब्रह्मांड को शामिल करने वाली सभी दिशाओं में एक क्षेत्र है। यह निकायों द्वारा कब्जा की गई एक ज्यामितीय स्थिति है। निर्देशांक की एक परिभाषित प्रणाली के संदर्भ में इन स्थितियों का वर्णन रैखिक या कोणीय मापों द्वारा किया जाता है।
समय
घटनाओं
के
उत्तराधिकार
का
माप
है।
चयनित
क्रमिक
घटना
पृथ्वी
का
अपनी
धुरी
पर
घूमना
है,
जिसे
एक
दिन
कहा
जाता
है।
दिन
को
24 घंटे,
एक
घंटे
को
60 मिनट
और
एक
मिनट
को
60 सेकंड
में
बांटा
गया
है।
अंतरिक्ष की अवधारणा बिंदु "पी" की स्थिति की धारणा से जुड़ी है, कार्टेसियन संदर्भ बिंदु, या मूल से मापी गई तीन-लंबाई, तीन परस्पर लंबवत दिशाओं में एक बिंदु के समन्वय के रूप में जानी जाती है, जबकि समय अंतरिक्ष में इसकी स्थिति को इंगित करता है।.
Length
It is a concept to measure linear distance. The standard unit of length
is a meter (m). A meter is defined as the length of the standard bar of
platinum-radium kept at the international bureau of weight and measure. The other
units are millimeter (mm), centimeter (cm), and kilometer (km).
for example:
- The diameter of the needle is 1.5 mm
- The diameter of a cylinder is 30 cm
- The height of the building is 15 m
- The distance between two cities is 400 km
1
km = 1000 m, 1 m = 100 cm, 1 cm = 10 mm.
लंबाई
यह
रैखिक
दूरी
को
मापने
की
अवधारणा
है।
लंबाई
की
मानक
इकाई
एक
मीटर
(एम)
है।
एक
मीटर
को
वजन
और
माप
के
अंतरराष्ट्रीय
ब्यूरो
में
रखे
प्लेटिनम-रेडियम
के
मानक
बार
की
लंबाई
के
रूप
में
परिभाषित
किया
गया
है।
अन्य
इकाइयां
मिलीमीटर,
सेंटीमीटर
और
किलोमीटर
हैं। यह
रैखिक
दूरी
को
मापने
की
अवधारणा
है।
लंबाई
की
मानक
इकाई
एक
मीटर
(एम)
है।
एक
मीटर
को
वजन
और
माप
के
अंतरराष्ट्रीय
ब्यूरो
में
रखे
प्लेटिनम-रेडियम
के
मानक
बार
की
लंबाई
के
रूप
में
परिभाषित
किया
गया
है।
अन्य
इकाइयां
मिलीमीटर,
सेंटीमीटर
और
किलोमीटर
हैं।
उदाहरण के लिए:
- सुई का व्यास 1.5 मिमी है
- एक बेलन का व्यास 30 सेमी है
- भवन की ऊंचाई 15 मीटर है
- दो शहरों के बीच की दूरी 400 किमी है
1 किमी = 1000 मीटर, 1 मीटर
= 100 सेमी, 1 सेमी = 10 मिमी।
mass, weight, length, time and space - video lecture
Continuum
The
body is treated as a continuum. The body can be sub-divided into molecules,
atoms, and electrons. It is very difficult to solve any engineering problem by
treating a body as a conglomeration of such discrete particles.
सातत्य
शरीर को एक निरंतरता के रूप में माना जाता है। शरीर को अणुओं, परमाणुओं और इलेक्ट्रॉनों में उप-विभाजित किया जा सकता है। ऐसे असतत कणों के समूह के रूप में शरीर मानते हुए किसी भी इंजीनियरिंग समस्या को हल करना बहुत मुश्किल है।
Rigid
Body
A body is said to be
rigid, if the relative positions of any two-particle do not change under the
action of forces acting on it.
Consider a body as shown in
figure 3, Point A and B are the original positions in a body. After application
of the forces F1, F2, F3, and F4 the body takes a new position, the point A'
and B' represent a new position, if the body is rigid the relative positions of AB
and A'B' measures are same.
Figure 3 |
एक शरीर को कठोर कहा जाता है, यदि किसी दो-कण की सापेक्ष स्थिति उस पर कार्य करने वाली शक्तियों की कार्रवाई के तहत नहीं बदलती है।
चित्र 3 में दर्शाए अनुसार
किसी पिंड पर विचार करें, बिंदु A और B किसी पिंड की मूल स्थिति हैं। F1, F2, F3, और
F4 बलों के आवेदन के बाद शरीर एक नई स्थिति लेता है, बिंदु A' और B' एक नई स्थिति का
प्रतिनिधित्व करते हैं, यदि शरीर कठोर है तो AB और A'B' उपायों की सापेक्ष स्थिति समान
होती है .
Particle
A particle may be
defined as an object which has only mass and no size. Theoretically, such a
body cannot exist. However, in dealing with problems involving distances
considerably larger compared to the size of the body, the body is treated as a
particle, taking care of accuracy [ Bhavikatti S. S].
- A bomber aircraft is a particle for a gunner operating from the ground.
- A ship in mid-sea is a particle in the study of its relative motion from the control tower.
- In the study of the movement of the earth in the celestial sphere, earth is treated as a particle.
कण
एक कण को एक वस्तु के रूप में परिभाषित किया जा सकता है जिसका केवल द्रव्यमान और कोई आकार नहीं है। सैद्धांतिक रूप से, ऐसा शरीर मौजूद नहीं हो सकता। हालांकि, शरीर के आकार की तुलना में काफी बड़ी दूरियों से जुड़ी समस्याओं से निपटने में, शरीर को एक कण के रूप में माना जाता है, सटीकता का ख्याल रखते हुए [भविकट्टी एस.एस.]।
उदाहरण के लिए:
- एक बमवर्षक विमान जमीन से संचालित होने वाले गनर के लिए एक कण है।
- मध्य समुद्र में एक जहाज नियंत्रण टॉवर से अपनी सापेक्ष गति के अध्ययन में एक कण है।
- आकाशीय मंडल में पृथ्वी की गति के अध्ययन में पृथ्वी को एक कण के रूप में माना जाता है
Deformable body
When a body deforms due to A force or A torque it is said deformable body. Material generates stresses against deformation.
विकृत शरीरजब कोई पिंड A बल या A बल आघूर्ण के कारण विकृत होता है तो उसे विरूपित पिंड कहा जाता है। सामग्री विरूपण के खिलाफ तनाव उत्पन्न करती है।
Rigid Body - Concept - Video lecture
Define
the following terms: Continuum, rigid body and particle.
Force -बल
Force maybe defined as an agent
which, produces or tends to produce, destroys or tend to destroy motion in a
body.
बल को एक एजेंट के रूप में परिभाषित किया जा सकता है, जो निकाय में गति उत्पन्न करता है या उत्पन्न करता है, नष्ट करता है या नष्ट करता है।
Force is a physical quantity that
changes or tends to change the state of rest or motion of a body or changes the
dimensions of a body.
बल
एक भौतिक मात्रा है जो निकाय के आराम या गति की स्थिति को बदलता है या बदलता है या
शरीर के आयामों को बदलता है।
Effects of Force
A force has the following effects on
a
- External effect
- Internal effect
Force may produce the following external effects on a body (a) It may produces or stop the motion of body (b) It may balance the forces already acting on the body, thus bringing it to rest or equilibrium as shown in Figure 4.
एक बल का शरीर पर निम्नलिखित प्रभाव होते हैं:
- बाहरी प्रभाव
- आंतरिक प्रभाव
बल किसी पिंड पर निम्नलिखित बाहरी प्रभाव उत्पन्न कर सकता है (a) यह पिंड की गति उत्पन्न या रोक सकता है (b) यह पिंड पर पहले से ही कार्य कर रहे बलों को संतुलित कर सकता है, इस प्रकार इसे आराम या संतुलन में ला सकता है जैसा कि चित्र 4 में दिखाया गया है।
Figure 4 |
किसी बल का आंतरिक प्रभाव शरीर में विरूपण (आकार या आकार में परिवर्तन) उत्पन्न करना है। यदि पिंड कठोर है तो उस पर कार्यरत बलों की कार्रवाई के तहत कोई विरूपण नहीं होगा (जैसा कि चित्र 5 में दिखाया गया है)
Force and its effects – Video Lecture
Define the term Force and state the various characteristics of
force
Unit of Force
The
following are two systems of units of force
1.
Gravitational
units
2.
Absolute
units
The
gravitational or engineering unit of a force is defined as, “the force with
which the earth attracts a unit mass of the body. The gravitational units of force
are lb wt., gm wt, kg wt in FPS, CGS and SI system respectively.
The absolute or scientific units of
force are based on Newton's Second Law of Motion. Force is defined as the rate
of change of momentum. For an unchanging mass, this is equivalent to mass x
acceleration.
So,
1 N = 1 kg m s-2, or 1 kg m/s2.
The
absolute units of force are Poundal, dyne, Newton in the FPS, CGS and SI
system.
Definition of force according to various kinds of systems.
- C.G.S: 1 dyne is that amount of force which causes a one-gram mass to move with an acceleration of 1cm/s2.
- F.P.S: 1 slag is that amount of force which gives an acceleration of 1ft/s2 when acted by a force of one pound.
- M.K.S: kilo-gram weight is the force required to move a mass of one kilogram with an acceleration equal to gravitational acceleration g=9.8m/s2; i.e. 1 kg-wt = 9.8 N
- SI Unit: 1 N is the force which gives an acceleration of 1m/s2 to move a mass of 1 kg.
Characteristic of a force
A force is
characterized by its point of application, magnitude, and direction.
Magnitude: The quantity of a force is called its magnitude
Direction: The line along which the force acts is called its
direction
Sense: The way in which the force acts along the line of action is called the
sense of force
Point of Application: The Point at which the force acts on the
body is called the point of application.
Define the term Force and state the various characteristics of force - Video Lecture
Representation of Force
Scalar quantities
Physical quantities that are completely described by magnitude having a
specific unit and can be manipulated by ordinary algebra are called as scalar
quantities.
For example: Mass, Time, Energy, Area and Temperature are scalar
quantities that obey ordinary algebraic law of addition and multiplication.
(1) Cumulative law:
a + b = b + a
a x b
= b x a
(2) Associative law:
a + b
+ c = (a + b) + c = (c + b) + a = (a + c) + b
a x b
x c = (a x b) x c = (c x b) x a = (a x c) x b
(3) Distributive Law:
a x
(b + c) = (a x b) + (a x c)
Vectors
Physical quantities which have magnitude with specified unit and
direction and could be manipulated by vector algebra are called as vector
quantities.
Example: Displacement, Force, Velocity, Acceleration, Momentum, Couple
etc.
System of Forces
When several forces act simultaneously on a body, they constitute a system of forces. When all the forces acting on system do not lie in a single plane they constitute the system of forces in space. The other forms of force system can be classified as;
System of Force
6. Non-co-planar non-concurrent forces- All forces do not lie in the same plane, but their line of action does not pass through a single point.
Definesystem of forces and classify the system of forces with neat sketches -Video lecture
Type of Forces
- Tensile Forces
- Compression Forces
- Shear Forces
- Bending Forces
- Torsional Forces
Exercise No. 1:
(Reference RK Dhawan (2011), Applied Mechanics, S. Chand and Company Ltd, New Delhi)- Define Mechanics and Engineering Mechanics. What are the different classes of Engineering Mechanics?
- Describe the various systems of units. Which systems of units are being followed in India these days and why?
- Define Mass and Weight. How do they differ from each other?
- What do you understand by 1 Newton force? state how force is expressed in gravitational units.
- Define force and give units in which it is measured.
- Define the term force and state clearly the effect of force.
- What do you mean by a force system? Explain the various force systems.
Exercise No. 2:
(Reference RK Dhawan (2011), Applied Mechanics, S. Chand and Company Ltd, New Delhi)Fill in the blanks with appropriate words and rewrite
- The branch of Engineering Mechanics which deals with the action of forces on bodies at..............is called statics.
- The body in which the distance between any two particles remains constant is known as .......body
- The force with which the body is attracted to the earth's center is called.............................
- The quantity of matter contained in a body is called ...................
- The action in the form of ............. or ....... which produces or tends to produce, stops or tends to stop the motion of a body is called................
- The unit of force in the SI system is .................
- One newton is that much force produces an acceleration of 1 m/sec^2 in a mass of ................
Newton's First Law of Motion
An object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an unbalanced force.
- which predicts the behavior of stationary objects (v= 0 m/s; a = 0 m/s^2) stay rest.
- which predicts the behavior of moving loads (v≉ 0 m/s; a = 0 m/s^2) stay in motion with same speed and direction.
- the container was at rest and you attempted to move it.
- the container was in motion and you attempted to stop it.
- the container was moving in one direction and you attempted to change its direction
Newton's Second Law of Motion
StatementNewton's Third Law
Law of Transmissibility
StatementResultant Force
Equilibrant
Free Body Diagram (FBD)
A diagram that shows the forces on the body free of other bodies is called the free body diagram.Addition of Two Forces:
Composition of forces
Methods for the resultant force
- Analytical Method - Parallelogram law of forces, Triangle law of forces, Polygon law of forces
- Method of Resolution
Resolution of forces
The single force acting on a particle can be replaced by two or more forces which (together) have the same effect on the particle as that produced by single force (alone). These forces are called a component of the original force and the process are called a resolution of forces.
Principle of Resolution
Methods of resolution
- Resolution of forces into two components in any direction
- Resolution of forces into two components in the right angle to each other (rectangular)
Resolution of forces into two components in any direction
∠AOC =𝞪(P/sin𝛃)+(Q/sin𝞪)+(F/sin(𝞪+𝛃);
P = (F/sin(𝞪+𝛃)/ sin𝛃
Resolution of forces into two components in the right angle to each other (Rectangular)
∠AOC = 𝛉Example
P = (F/sin(𝞪+𝛃)/ sin𝛃 = [2000 x sin38⁰]/ sin (38⁰+15⁰) = 1541.78 N
Analytical Method
Triangle Law
[P/sin𝝰 ]+[Q/sin𝝲]+[R/sin𝝱]
Parallelogram Law
ANALYTICAL METHOD
Polygon Law of Force
StatementIt is an extension of triangle law of force for more than two forces which states that, " if a number of forces acting simultaneously on a particle, be represented in magnitude and direction, by the sides of a polygon taken in order; then the resultant of all these forces may be represented in magnitude and direction by closing side of the polygon, taken in opposite order".
Exercise No. 3:
- State and explain Newton's law of gravitational attraction.
- State and explain Newton's Three Fundamental Laws
- What do you understand about law of transmisibility? Explain it.
- Define Resultant Force and Equillibriant Force
- What do you understand about composition and resolution of forces
- State and explain parallelogram law of forces
To verify the triangle law of forces with the help of Gravesend's apparatus.
Gravesend's apparatus, paper sheet, weights, thread, drawing pine, mirror strip, three scale pans, set square, pencil, etc.
- Fix the paper sheet with drawing pins on the board set in a vertical plane.
- Pass one thread over the pulleys carrying a pan (for adding weight during the performance of the experiment) at its end.
- Take a second thread and tie its one end in the middle of the first thread and tie a pan at its other end.
- Add weights in the pans in such a manner that the small knot comes approximately in the center.
- Displace slightly the pans from their position of equilibrium and note if they come to their original position of rest. This will ensure the free movement of pulleys.
- Take the mirror strip and place under each thread lengthwise and mark two points keeping the eye, the thread and its image in the same line without disturbing the system.
- Mark lines of forces and write the magnitude of forces.
- Remove the paper from the board and produce the lines to meet at O.
- Use Bow’s notation to name the forces P, Q, and R as AB, BC and CA.
- Select a suitable scale and draw the line ab parallel to force P and cut it equal to the magnitude of P. From b draw the line bc parallel to force Q and cut it equal to the magnitude of Q (Fig. 8). Calculate the magnitude of ca i.e., R1 which will be equal to the third force R which proves the triangle law of forces. If R1 differs from the original magnitude of R, then percentage error is found as follows;
Parallelogram law of forces
Observations
Sr. No
|
Total weight of pan “P”
|
Total weight of pan “Q”
|
Total weight of pan “R”
|
Calculate resultant R1
|
|
- Pans/weights should not touch the vertical board.
- There should be only one central knot on the thread which should be small.
- While calculating the total force in each case the weight of the pan should be added to the weights put into the pan.
- Make sure that all the pans are at rest when the lines of action of forces are marked.
- All the pulleys should be free from friction.
To verify the Lami's Theorem of forces with the help of Gravesend's apparatus.
Gravesend's apparatus, paper sheet, weights, thread, drawing pine, mirror strip, three scale pans, set square, pencil, etc.
Thus, if three forces P, Q, and R acting at a point O are in equilibrium, Let the angle between their line of actions be α, β, and γ as shown in the figure.then according to lamis theorem
- Fix the paper sheet with drawing pins on the board set in a vertical plane.
- Pass one thread over the pulleys carrying a pan (for adding weight during the performance of the experiment) at its end.
- Take a second thread and tie its one end in the middle of the first thread and tie a pan at its other end.
- Add weights in the pans in such a manner that the small knot comes approximately in the center.
- Displace slightly the pans from their position of equilibrium and note if they come to their original position of rest. This will ensure the free movement of pulleys.
- Take the mirror strip and place under each thread lengthwise and mark two points keeping the eye, the thread and its image in the same line without disturbing the system.
- Mark lines of forces and write the magnitude of forces.
- Remove the paper from the board and produce the lines to meet at O.
- Use Bow’s notation to name the forces P, Q, and R as AB, BC and CA.
- Select a suitable scale and draw the line ab parallel to force P and cut it equal to the magnitude of P. From b draw the line bc parallel to force Q and cut it equal to the magnitude of Q.
- measure the angle α, β, and γ. Now by using Lami’s theorem calculate the magnitude of the third force R . If R1 differs from the original magnitude of R, then percentage error is found as follows;
Sr. No
|
Total weight of pan “P”
|
Total weight of pan “Q”
|
Total weight of pan “R”
|
Calculate resultant R1
|
|
- Pans/weights should not touch the vertical board.
- There should be only one central knot on the thread which should be small.
- While calculating the total force in each case the weight of the pan should be added to the weights put into the pan.
- Make sure that all the pans are at rest when the lines of action of forces are marked.
- All the pulleys should be free from friction.
Numerical
N-2: A body is supported to pull of 50 N and 100 N, if the angle between them is 70⁰. Determine the resultant magnitude and directionsolution:
R= √(P2 + 2PQcosθ + Q2)
R= √(502 + 2×50×100 cos(70)+ 1002)
R= 126.175 N
𝛼 =48.15⁰
N-3: Two forces of 100 N and 80 N respectively having included angle 135⁰ are acting on a particle. Find the resultant in magnitude and direction, when:
- Both the forces are pull
- The force 100 N is pull but that of 80 N is push
Case 1:
R= √(1002 + 2×80×100 cos(135)+ 802)
R= 71.318 N
𝛼 =52.48⁰
R= √(1002 + 2×80×100 cos(45)+ 802)
R= 166.47 N
𝛼 =19.86⁰
N-4: Determine the resultant of two equal forces P and Q when angle between them is;
- 0⁰ 5. 90⁰
- 30⁰ 6. 120⁰
- 45⁰ 7. 150⁰
- 60⁰ 8. 180⁰
Case 1:
R= √(P2 + 2PQcosθ + Q2)
R= √(P2 + 2×P×P cos(0)+ P2)
R= √(4P2)
R= 2P N
Case 2:
R= √(P2 + 2PQcosθ + Q2)
R= √(P2 + 2×P×P cos(30)+ P2)
R= √(3.732P2)
R= 1.932P N
Case 3:
R= √(P2 + 2PQcosθ + Q2)
R= √(P2 + 2×P×P cos(45)+ P2)
R= √(3.414P2)
R= 1.847P N
Case 4:
R= √(P2 + 2PQcosθ + Q2)
R= √(P2 + 2×P×P cos(60)+ P2)
R= √(3P2)
R= 1.732P N
Case 5:
R= √(P2 + 2PQcosθ + Q2)
R= √(P2 + 2×P×P cos(90)+ P2)
R= √(2P2)
R= 1.414P N
Case 6:
R= √(P2 + 2PQcosθ + Q2)
R= √(P2 + 2×P×P cos(120)+ P2)
R= √(P2)
R= P N
Case 7:
R= √(P2 + 2PQcosθ + Q2)
R= √(P2 + 2×P×P cos(150)+ P2)
R= √(0.268P2)
R= 0.517P N
Case 8:
R= √(P2 + 2PQcosθ + Q2)
R= √(P2 + 2×P×P cos(180)+ P2)
R= √(0P2)
R= 0 N
N-5: Find the magnitude of two forces, P and Q such that if they act at right angle their resultant is √34 N. If they act at 60⁰ their resultant is 7N.
Solution:
R2 = P2 + 2PQcosθ + Q2
(√34)² = P2 + 2PQcosθ + Q2
34 = P2 + Q2
R2 = P2 + 2PQcosθ + Q2
72 = P2 + 2PQcos60⁰ + Q2
49 = P2 + Q2+ PQ 49 = 34 + PQ
15 = PQ
Q = 15/P
P2 + (15/P)2= 34
P=5N; Q=3N
N-6: Find the greatest and smallest resultant of two forces whose magnitude are 20N and 15N respectively by making the suitable assumptions.
Solution:
R= √(P2 + 2PQcosθ + Q2)R= √(202 + 2×20×15 cos(θ)+ 152)
For R to be maximum, cosθ should be maximum, θ = 0
R= √(202 + 2×20×15 cos(0)+ 152)
R = 34 N
For R to be minimum, cosθ should be maximum, θ = 180
R= √(202 + 2×20×15 cos(180)+ 152)
R = 5 N
N-7: Determine the angle between two like forces P. When their resultant is; (a) P/4, (b) P/2, and (c) P.
Solution:
Case a:
R2 = P2 + 2PQcosθ + Q2
(P/4)2 = P2 + P2cosθ + P2
(P/4)2 = 2P2 (1+ cosθ)
(1/32) = (1+ cosθ)
cosθ = -(1-1/32) = -31/32
θ = 165.63⁰
Case b:
R2 = P2 + 2PQcosθ + Q2
(P/2)2 = P2 + P2cosθ + P2
(P/2)2 = 2P2 (1+ cosθ)
(1/8) = (1+ cosθ)
cosθ = -(1-1/8) = -7/8
θ = 151.044⁰
Case c:
R2 = P2 + 2PQcosθ + Q2
(P)2 = P2 + P2cosθ + P2
(P)2 = 2P2 (1+ cosθ)
(1/2) = (1+ cosθ)
cosθ = -(1-1/2) = -1/2
θ = 180⁰
N-8: The sum of the two forces is 9N their resultant which is perpendicular to the smaller is 6N. Find the magnitude of the two forces and angle between them.
Solution:
P+Q = 9N
Solution
Solution
Resultant of ;
Co-linear Forces
R = ∑ Fⱼ = F1+F2+F3+F4R = 7+9+10-12 = 14 kN
Coplanar Concurrent Forces
- Resolve all forces in components that coincide with two arbitrary chosen axes which are mutually perpendicular (in general x-axes and y axes)
- Take summation of all component for in respective axes i.e ∑ Fₓ and ∑ Fy
- Resultant force equals to √(∑ F²ₓ + ∑ F²y )
- Direction 𝛼 = tan⁻¹ ( ∑ Fy / ∑ Fₓ)
∑ Fₓ = P cosθ1 + Q cosθ2 + S cosθ3
- 30 N inclined at 30⁰ towards North-East
- 25 N towards North
- 30 N towards North-West and
- 35 N inclined at 40⁰ towards South-West
Force θx Fₓ = Fcos θx Fy = Fsinθx
20N 30 17.32N 10N
25N 90 00.00N 25N
30N 45 - 21.21N 21.21N
35N 40 -26.81N -22.50N
∑Fₓ =-30.70N ∑Fy =+33.71N
R = √(∑ F²ₓ + ∑ F²y )
R = √ (-30.70)² + (33.715)²
R = 45.60 N
𝛼 = tan⁻¹ ( ∑ Fy / ∑ Fₓ)
𝛼 = tan⁻¹ ( 33.715 / -30.70)
𝛼 = -47.67º
actual 𝛼 = 180-47.67º = 132.30º
N-12: Determine the resultant of the following force system shown in figure
∑Fy = +5sin30͐º+10sin60͐º+12sin40͐º-4-15sin60͐º-12cos40͐º = -8.35 N
R = √(∑ F²ₓ + ∑ F²y )
R = √ (-0.69)² + (-8.35)²
R = 8.37 N
𝛼 = tan⁻¹ ( ∑ Fy / ∑ Fₓ)
𝛼 = tan⁻¹ ( -8.35 / -0.69)
𝛼 = 85.287º
let ∑ Fₓ =0
∑ Fₓ = +40 + 40sin𝛼 -80cos⍺ = 0
40(1 + sin𝛼 ) = 80cos⍺
(1 + sin𝛼 ) = 2cos⍺
(1 + sin𝛼 )² = (2cos⍺)²
(1 + 2sin𝛼 + sin²𝛼) = 4(1-sin²𝛼)
5sin²𝛼 + 2sin𝛼-3 = 0
𝛼 = 36.87° or 90°
∑Fy = 40cos𝛼 -80sin⍺ = -R
40cos36.87° -80sin36.87° = -R
R = 80 N (↓)
Moment (M)
Units are kNm, Nm, etc.
Sign Convention: Clockwise (+ve) and anti-clockwise (-ve)
Varignon's Theorem (Law of Moments)
P and Q are the force acting at a point "A"
R be the resultant of P and Q
Moment of 'P' about "O" is
Mp = P x d₁
Moment of 'Q' about "O" is
Mq = Q x d₃
Moment of 'R' about "O" is
Mr = R x d₃
Mp + Mq = (P x d₁) + (Q x d₃)
= (P x OA cosθ₁) + (Q x OA cosθ₃)
= [(P cosθ₁) + (Q cosθ₃)] x OA
= [Rcosθ₃] x OA
= Rd₃
Mp + Mq = Mr
Gravity Axis of Body:
Center of gravity:
Centroid
Methods of Determining Centro of Gravity
- By Geometrical Method
- By the Method of Moments
- By Graphical Method
- By Integration Method
- Choose the two mutually perpendicular axis OX and OY. The axes should be so selected that they touch or pass through the nearest line of the figure.
- Check whether the section is symmetric about any X-X axis or Y-Y axis, the CG will lie on that axis
- The composite figure is divided into small areas such as square, rectangle, circles, etc.
- Then find the position of CG by calculating the X and Y
- If the area is removed from the figure such as hole, it should be subtracted from the original area and the moment should be treated as negative
C1: Centroid of
Triangle
for moment of area of the complete semi-circle integrate between 0 to 𝜋
To find the center of gravity of regular lamina
Paper sheet, drawing pin or tape. set squares, scale cards, etc
Every body is attracted towards the center of the earth due to gravity. The force with which the body is attracted towards earth is called weight of the body. the whole weight of the body is supposed to act at a point where the whole area of a lamina is supposed to act is also known as centroid or center of gravity
Procedure
The center of gravity of any lamina may be founded by adopting the following steps:
- Choose the two mutually perpendicular axis OX and OY. The axes should be so selected that they touch or pass through the nearest line of the figure.
- Check whether the section is symmetric about any X-X axis or Y-Y axis, the CG will lie on that axis
- The composite figure is divided into small areas such as square, rectangle, circles, etc.
- Then find the position of CG by calculating the X and Y
- If the area is removed from the figure such as hole, it should be subtracted from the original area and the moment should be treated as negative
Sr. No
|
Areas in “mm2”
|
Distance from OX axis in mm
|
Distance from OY axis in mm
|
Position of CG from OX
|
Position of CG from OY
|
⃑⃑x = (A₁x₁ + A₂x₂ + A₃x₃+....+Aₙxₙ)/
(A₁ + A₂ + A₃+....+Aₙ)
|
⃑y = (A₁y₁ + A₂y₂ + A₃y₃+....+Aₙyₙ)/
(A₁ + A₂ + A₃+....+Aₙ)
|
- Calculate the areas accurately
- Find the CG position from standard relationships
Uniformly Varying Load
Couple
WORK,
ENERGY AND POWER
Work
The work done by a force on a moving body is defined as the product of the force and the distance moved in the direction of the force. It is abbreviated with a symbol (W). Figure below illustrates the work done by a force.
Mathematically, work done by a
force is;
F = force × distance = F x S
The unit of work depends upon the
units of the force and distance. In SI units work done is represented as Nm,
which is also termed as Joule (J). One
joule may be defined as the work done by 1 N force, when it displaces the body
through 1m; mathematically 1 joule (J) = 1Nm.
The other commonly used units are; Kilo joules (KJ) kNm, mille joules (MJ) N-mm, etc.
Work
done by a constant force
The work done by a constant force may be defined as the product of the component of the force in the direction of displacement and the distance moved. Mathematically;
W = Fcosθ x d
Figure (a), demonstrates the work done by a constant force. When a force acts on a body in the direction of motion, the work done by the force is taken to be positive, but if the force acts in opposite to the direction of motion, the work done by the force is taken to be negative. Figure (b), depicts that as long as the person shown in picture does not lift or lower the bag of groceries, he is doing no work on it. The force he exerts, has no component in the direction of motion.Graphical
representation of the work done
The work done,
during any operation, can also be represented by a graph, by plotting distance
along x-axis and the force along y-axis. The work done, is equal to the product
of the force and distance, therefore the area under the figure (a) and (b),
represents the work done to some scale, such diagrams are called force-distance
diagrams. Figure (a), represents the work done by a constant force, force
diagram appears to be rectangular. Figure (b), represents the work done by a
variable force, force diagram appears to be trapezium.
Exercise
1. A
trolley of mass 200 kg moves on a level track for a distance of 500 m. If the
resistance of the track is 100 N, find the work done in moving the trolley.
Solution:
Given data; m = 200 kg; d = 500 m, Track
resistance = 100 N
Work done =
Force x distance
= Track resistance x distance
= 100 x 500 = 50,000 Nm or 50 kJ
2.
A horse pulling a cart
exerts a steady horizontal pull of 250 N and walks at the rate of 5 km/h. How
much work is done by the horse in 7 min.?
Solution: Given
data; P = 250 kN, velocity (v) = 5 km/h, = 83.33 m/min, time (t) = 7 min.
The distance
traveled in 7 min = 83.33 x 7 =583.33 m
Work done = Force x distance
= 250 x 583.33 = 145833.33 N-m = 145.833 kNm or kJ
3. A
spring is stretched by 50 mm by the application of a force. Find the work done, if
the force required to stretch 1 mm of the spring is 8 N.
Solution: Force
required stretching the spring by 50 mm = 50 x 8 = 400 N.
Average force = 400/2 = 200 mm
Work done = Average force x distance
= 200 x 50 = 10000 Nm or 10 J
4. A
force
1. How
much work is done when a force of 5 kN moves its point of application 550 mm in
the direction of force?
2. Find the work done in raising 100 kg of water through a vertical distance of 2 m.
3. A block weighing 400 N is resting on a smooth horizontal surface. What work will be done if the block is to be moved through 2 m distance by applying (a) A horizontal force of 150 N and (b) A force of 200 N whose line of action makes an angle of 300 with the horizontal
4.
When is work done by a
force is positive and when it is negative
5. A man carrying a bucket of water is walking on a level road with a uniform velocity. Does he do any work on the bucket while carrying it?
Energy
In engineering mechanics interest lies in mechanical energy. Mechanical energy is further classified as; (a) Potential energy, and (b) Kinetic energy
Potential
energy
It
is the energy possessed by a body, for doing work by virtue of its position or
energy in storage. For example;
The potential energy is further classified as;
- Gravitational potential energy,
- Elastic potential energy, and
- Chemical potential energy
Gravitational
potential energy
When a body is raised to some height
above the ground level, possess some potential energy, because it can do some
work by falling on the earth’s surface.
Illustration
of gravitational PE
Uses
- Gravitational potential energy is used
for generating hydroelectricity.
- Gravitational potential energy is also
used to power clocks where the
falling weight (pendulum) operates the mechanism.
Elastic potential energy
Elastic potential energy is the energy stored in elastic materials when they are
stretched or compressed. Elastic potential energy can be stored in springs, bungee chords, an arrow drawn
into a bow, rubber bands, etc. The amount of elastic potential energy is more when there is more stretching (directly
proportional to stretching). If we take mechanical spring as an example, if
there is more force needed to compress a spring, then it signifies that there
is more compression going on (and hence more energy is being stored in the
spring). The figure, below shows potential energy yielding kinetic
energy,
The force
required to compress or stretch a spring is; Fs = -kx
Where k is called the spring constant, and
needs to be measured for each spring.
Uses
- Springs in shock absorbers are used to keep the ride comfortable, while
vehicles go over bumps on a road. Those springs
convert the kinetic energy of the vehicle into elastic potential energy, which is dissipated slowly over the course of the ride, rather than in the
instant the vehicle hits a bump.
- Springs in clocks (either hand wound or automatic ones that don’t need any
winding) that slowly translates elastic potential energy into kinetic energy to move the gears and the hands of the clock.
- Rubber bands or strings in a
sling shot or a bow, which translate the elastic potential energy into kinetic energy of the shot or the bow.
Kinetic energy
It is an energy
possessed by a body for doing work by virtue of its mass and velocity, for
example;
Examples of
kinetic energy
Consider a body
moving with a velocity v m/s as shown in the figure, has been
brought to rest by a uniform retardation due to stopping the engine. It will
still move a certain distanced d m. From the kinematics of motion, we
have;
Illustration of work done by virtue of
displacement
From D’ Alembert’s Principle,
This work is done by the energy stored
initially in the body. The kinetic energy stored initially in the body is,
The net work done in the motion of a
body shown in the figure is,
That is, Work
done = Final kinetic energy – Initial kinetic energy, and this is called as
Work-Energy Equation.
This work energy equation may be stated as the work done by a system of
forces action on the body during a displacement is equal to the change in
kinetic energy of the body during the same displacement.
Exercise
1.
A box of mass 60 kg is moving at a speed of 15 m/s on a
ropeway. If the box is 35m above the ground, estimate the potential energy and
kinetic energy of the box.
Solution: given; m = 60
kg, velocity = 15 m/s, height above ground – 35 m
Potential
energy = mgh = 60 x 9.81 x 35 = 20601J = 20.601kJ
Kinetic energy = ½ mv2 = ½ x 60 x 152 = 6750 J = 6.75 kJ
2.
A truck of mass 10 ton travelling at 1.5 m/s impacts with
a buffer spring, which compresses 1.5 mm per kN. Find the maximum compression
of the spring.
Solution:
The mass of a truck (m) =10 ton
Velocity of truck (v) = 1.5 m/s
Buffer spring constant (k) = 1.5 kN/mm
Let, x =
Maximum compression of the spring in mm
Kinetic energy
= ½ mv2 = ½ 10 × (1.5)2 = 11.25 kNmm,
And, compressive load = x/1.5 = 0.67x kN
Work done in compressing the spring = Average compressive load x Displacement
= ½ x 0.67x x x = 0.67x2
kNmm
Since the
entire kinetic energy of the truck is used to compress the spring therefore
equating kinetic energy and work done we, get
112500 = 0.67 x2
x = 129.58 m
3.
A block weighing 380 N is resting on a smooth horizontal
surface. What work it will be done if the block is to be moved through 2m
distance by applying
- A horizontal force of 125 kN
- A force of 150 N whose line of action makes an angle of 300 with the horizontal.
Solution:
Case 1: Work
done = force x distance = 125 x 2 = 250 N-m = 250 J
Case 2: Work
done = Component of force in the direction of motion x distance
= 130 Cos (300) x 2 = 225.17
N-m = 225.17 J
Work done on a block
4. A man wishes to
move a wooden box of a 1m3 be at a distance of 5m with the least
amount of work. If the block weighs 2 kN and the coefficient of friction is
0.30, find whether he should tip it or slide it.
Solution:
Case 1:
Normal reaction
(N) = W = 2 kN.
Friction force
(F) = µN
Applied force
(P) = F = µN = 0.3 x 2 = 0.6 kN
Work done in sliding to a distance of 5m = P x 5 = 0.6 x 5 = 3 kNm or 3 kJ
Case 2:
In one tipping
the center of gravity of the box is to be raised to a height
=
Work
done for one tipping = W x h = 2 x 0.207 = 0.414 kJ
To move a
distance of 5m five tippings is required;
Work done for
five tippings are, = 0.414 x 5 = 2.070 kJ
Since man needs
to spend only 2.070 kJ in tipping which is less than 3 kJ to be spent in
sliding, the man should move the box by tipping
Exercise (home work)
- A vehicle accelerates a glider of 150 kg mass from rest to a speed of 50 km/h. Make calculations for the work done on the glider by the vehicle. What change would occur in the kinetic energy of the glider if subsequently its velocity reduces to 20 km/h on the application of brakes?
- A block weighing 2000 N rests on a level horizontal plane for which coefficient of friction is 0.18. This block is pulled by a force of 800 N acting at an angle of 300 with the horizontal. Find the velocity of the blocks after it moves 30 m starting from rest. If the force of 800 N is then removed, how much further will it move? Use work energy method.
- A small block starts from rest at a point A and slides down the inclined plane shown in the figure. What distance along the horizontal plane will it travel before coming to rest? The coefficient of kinetic friction between the block of the either plane is 0.3. Assume that the initial velocity with which it starts to move along BC is of the same magnitude as gained in sliding from A to B
Power
Power is
defined as the rate of doing work and is generally used for measuring
performance of prime movers or engines. Power is the amount of work done,
divided by the time it takes to do it. Mathematically,
In SI units,
the unit of power is watts (W) which is equal to 1 Nm/s or 1 J/s. The unit of
power in metric is horsepower (HP).
Exercise
1.
Find the power of an engine, which can do a work of 1500J
in 8 seconds
Solution:
Power = work / time = 1500 / 8 = 187.5
J/s
Power = 187.5 W
Solution:
Work done = force x displacement
= 3000 x 10 = 30000 J
Power = wok done / time taken =
30000/50
= 600 W
Alternatively
Velocity = distance/ time = 10/50 = 0.2
m/s
Power = force x speed = 3000 x 0.2
= 600 W
3. A hoist operated by an electric motor has a mass of 500 kg. It
raises a load of 250 kg vertically at a steady speed of 0.2 m/s. Frictional
resistance can be taken to be constant at 1200. What is the power required?
Solution:
Total mass =
500 + 250 = 750 kgs
Weight = 750 x
9.81 = 7357.50 N
Total force =
7357.50 + 1200 = 8557.50 N
Power = force x
speed = 8557.50 x 0.20
= 1711.5 W or
1.711 kW
4.
A trolley of mass 200 kg moves on a level track for a
distance of 500 m. If the resistance of the track is 100 N, find the work done
in moving the trolley.
Solution:
Work done by trolley = Resistance x distance
= 100 x
500
= 50,
000 Nm or 50 kJ
5. A
car of mass 800 kg has an engine with power output of 40 kW. It can achieve a
maximum speed of 120 km/h along the level. What is the resistance to motion? If
the maximum power and the resistance remained the same, what would be the
maximum speed the car could achieve up to an incline of 1 in 40 along the
slope?
Solution:
Speed = 120 km/h = (120 x 1000)/3600 = 33.33
m/s
a.
Calculate the resistance
Power = force x speed = resistance x speed
Resistance = power/ speed = 40000/120 =
1200.12 N
b.
Total force down the incline = frictional
force + component of weight down the incline
Total force = 1200.12 + 800 x 9.81x sinθ
=
1396.32
Power = force x speed
Speed = power/ force = 40000/1396.32 = 28.646
m/s
Speed = (28.646 x 3600) / 1000 = 103.12 km/h
6.
An army truck of mass 8 ton has a resistance of 75 N/t. Find
the power of the truck for moving with a constant speed of 45 km/h.
Solution:
The mass of a truck (m) = 8 tones
Velocity (v) = 45 km/h =
45000/60x60 = 12.5 m/s
Frictional resistance = 75x8 =600 N
Work done in one second = Resistance x
distance
= 600 x 12.5
= 7500 N-m = 7.5 kJ
7. A train weighing 4000 kN starts from rest and accelerates uniformly to 75 km/h in 40s. If the frictional resistance is estimated to 2.5 kN per 1000 kN of weight of trains, work out the maximum power required and the power required to maintain the speed of 75 km/h.
Solution:
Initial velocity (u) = 0 m/s;
Final velocity (v) = 20.83 m/s;
and time t = 40 s.
From kinematic relations v = u +at
Acceleration =
The frictional resistance to motion R = 2.5 per 800 kN of weight of the train Let p be the tractive effort in N, then the force available for traction,
=
P-R = P -10000
Applying Newton’s second law of motion
F = ma we have,
P = 222028.54 N
Maximum power required = P x v =
222028.54 x 20.83
= 4624.854 x 103 W = 4.624 MW
At any time after 40 seconds, the
force required only to overcome frictional resistance of 10 kN
The Power required = Frictional resistance x
velocity
= 10000 x 20.83 = 208.3 x 103 W = 208.3
kW
Exercise
(home work)
1. A 700 kW power
engine, working at full power propels a 2300 kN train up an incline of 1 in 100
at a speed of 60 km/h. If the track resistance is 5N per kN weight of the train,
determine the acceleration with which the train is moving.
2. Calculate the power required to pull a 350 kN train up an incline of 1 in 100 at a steady speed of 60 km/h. Take frictional resistance equal to 5N per kN weight of the train. At what particular instant while ascending the incline, the supply of the steam to locomotive pulling the train is shut off. How far the train will move before coming to rest? Assume that track resistance remains unchanged.
Law of
conversation of energy
It states “the energy can neither be created nor
destroyed, though it can be transformed from one form to another of the forms,
in which the energy exists”. Alternatively “the total energy possessed
by an object remains constant provided no energy is added to or subtracted from
it”. The concept can be understood from figure.
Fig., shows a person holding a
stone at a height “h” above the ground. The total energy possess by the
body is sum of potential energy and kinetic energy. At top y1
= h, kinetic energy possess in the body will be zero since v = 0,
the body will possess only potential energy (mgh).
Let the body falls to position which is a mid of height raised. The velocity of the body at this location can be worked out from the kinematic equation v2-u2 = 2as
which gives;
Total energy =
K.E + P.E
Finally when the body has been
complete fall from the top of tower to ground level
Total energy =
K.E
Conservative
and non-conservative forces
If friction is present, the work done depends not only on
the starting and ending points, but also on the path taken. Friction is called
a non-conservative force (as illustrated in Fig.). Potential energy can only be
defined for conservative forces.
Conservative
forces The work done
by that force on the object is independent of the object’s path. |
Non-conservative
forces or dissipative forces A force that
does not store energy. |
Gravitational force |
Friction |
Elastic force |
Air resistance |
Electric force |
Tension in chord |
Spring force |
Motor or Rocket propulsion |
Exercise
1.
A body of 5 kg mass is initially at rest on a rough
horizontal surface (µ = 0.20) and is acted upon by a 25 kN pull applied horizontally.
Calculate;
a.
The work done by the net force on the body in 5s.
b.
Change in kinetic energy of the body in 5s.
Solution:
Case a:
Normal reaction
(R) = 5 x 9.81 = 49.05 N
Force of
friction (F) = 0.20 x 49.05 = 9.81 N
Net force
causing motion = 25-9.81= 15.19 N
Applying Newton’s
second law of motion; F = ma, we have;
15.19 = 5 x a
a = 15.19/5 = 3.038 m/s2
From kinematic
equation
Work done by the net force = 15.19 x 37.795 = 576.84 Nm
Case b:
The body starts
from the rest (u=0), and accordingly initial kinetic energy in the body
is zero
Final kinetic
energy =
The final velocity is obtained by using
relation v=u + at,
v = 0 +
3.038 x 5 = 15.19
m/s
Change in
kinetic energy =
2.
A train weighing 2000 kN starts from rest with an
acceleration of 0.8 m/s2 and acquires a speed of 80 km/h. Determine
the kinetic energy corresponding to final speed and the average power required.
Subsequently the power is shut off and the train is subjected to a retarding
force equal to 8% of the weight of the train. Calculate the distance the train
will travel before coming to rest.
Solution:
Case 1:
The final speed of the train V =
(80 x 1000)/3600 = 22.22 m/s
The kinetic energy of the train = ½ mV2
=
= 50.33 kNm
Using kinematic relation v =
u + at, the time taken to acquire the speed of 22.22 m/s is obtained as;
Now, applying work-energy
principle, we get,
Work done = change
in kinetic energy
= 50.33 kNm
Work done per second
= 50.33 / 31.25 = 1.61 kNm
Average power
required will be = work done per second = 1.61 MW
Case 2:
Retarding
force = 8% weight of train = 0.08 x 2000 = 160 kN
From
work-energy principle
Force
x distance = change in kinetic energy
160000
x s = 50330000
s
= 314.56 m
The
distance traveled by the train before coming to rest = 314.56 m
Exercise
(Home Work)
1.
A block of
weight 1800 N rests on a rough inclined surface (µ=0.20) of inclination 200 and
is pulled by a force of 600 N applied at an angle of 300 to the
horizontal. Determine the velocity attained by the block after it has moved 20
m starting from rest. Proceed to calculate the further distance moved by the
body if the pull is removed. Use work-energy relation.
2.
A block of
5 kg mass slides from rest at a point 1 along a frictionless inclined plane that
makes an angle of 300 with the horizontal. What will be the speed of
the block at point 2 which lies at a distance of 2.5 m from the point? Obtain
your solution by applying the principle of work-energy and conservation of
energy.
3.
A body of mass 100 kg is
travelling with a velocity of 500 m/s. During its motion, it splits into two
equal portions which continue to travel in the same direction. If an energy
equivalent to 2 x 106 Nm is released at the instant of the
separation, determine the subsequent velocities of the two portions.
Very helpful.
ReplyDeleteIf you need to fix run time Facebook error 230 then, in that case, get the conflicting programs closed for that open the task manager for that click the CTRL-Alt- Del at the same time you will then get to see the list of programs running on the system after that go to the processes tab. If you are still looking for more information or help then ask for it from the team of experts.
ReplyDeleteFacebook Help Number UK
I would like to say that this blog really convinced me to do it! Thanks, very good post. study business in university of New Brunswick Canada
ReplyDeleteVery nice , Very useful information blog post, it is very easy way for learning.
ReplyDeleteManufacturers of Steel Buildings Structural and Plate Girder Fabrication construction work click here. Structural Steel Fabrication, Structural Steel Erection Services,